f<
b A

s

DAl
%

S

("’?‘/‘ 3{:’? g

T

i

X
RV

A

: ._ ' 5 1\ \

L

-, ./’.. N Uw& .w, V/V/V/, TR

e X SRR
Ny % .,g 3 8

.;.‘., rgi W,.

 §

1€S

r
“,ﬁi. .

LAl SR i N
i

ol

| b

\ _._._"w—»_..,__”rw&%.;(,ir‘
LT _f_:;Tu aeig
g

.:_,%.,

ith(out) dependenc

Q_v!
M\:

-
P
i

)

ing w

-y

T S
k¢

e g

i, \4. yrez w\ -
i

i
I
T q
AW o /A
) 7 !

— «_ \
1] //

i
il

S

Test

Sebastian Bergmann

I can help you
» adopt PHPUnit,
. optimize your tests,
- refine your development

processes, and

. write more testable code

thePHP

,An object-oriented system is a web of collaborating
objects. A system is built by creating objects and
plugging them together so that they can send messages
to one another. The behavior of the system i1s an
emergent property of the composition of the objects -
the choice of objects and how they are connected.”

Steve Freeman and Nat Pryce

thePHP

,The big idea is "messaging" [...| The key in making
great and growable systems i1s much more to design
how its modules communicate rather than what their

internal properties and behaviors should be.”

Alan Kay

thePHP

Services
- Encapsulate computational processes

« Should implement an interface

Business Objects
» (Immutable) Value Objects

. Entities

thePHP

Services
- Encapsulate computational processes

« Should implement an interface

Newable Objects
» (Immutable) Value Objects
- Entities

thePHP

-When we are writing a test in which we cannot (or
choose not to) use a real [collaborating object|, we can
replace it with a Test Double.”

Gerard Meszaros

thePHP

You would not risk the real Harrison Ford getting injured, right?

thePHP

You would not test domain logic while talking to the database, right?

thePHP

« Dummy Object
. Test Stub

- Test Spy

« Mock Object

. Fake Object

- Dummy Object
- Test Stub

- Test Spy

« Mock Object

. Fake Object

Test Stub

. Looks like a real collaborating object
 Can be configured to return a value or throw an exception

. Allows us to test an object that interacts with the doubled object

Mock Object
. Looks like a real collaborating object
 Can be configured to return a value or throw an exception
. Can be configured to expect messages (method calls)

 Allows us to test the communication between objects "
thePHP

public function testEmitsGoodSoldEvent(): void

{
$sourcer = new class implements MarketSourcer
{
public function source(): Market
{
return Market::from(5, 3, 3, 3, 3, 3);
}
&
/] ...
$processor = new SellGoodCommandProcessor($emitter, $sourcer);
Sprocessor=>process(new SellGoodCommand(Good: :EBread, 1));
/] ...
}

the%

Test Stub (handwritten anonymous class)

public function testWritesSubscribedEvents(): void

{
/] ...

$writer = new class i1mplements EventWriter {
private array $events;

public function write(Event $event): void {
$this->events[] = $event:
}

public function events(): array {
return $this->events:
}

};

$subscriber = new WritingEventSubscriber(swriter);
$subscriber->notify($event);

$this->assertSame([$event], $writer->events()):

} Test Spy (handwritten anonymous class)

the%

PHPUnit can create test stubs and mock objects dynamically,

so you do not need to implement them manually.

Using an API, you can specify how a test stub should behave as
well as the expected communication between the object you test

and a mock object.

thePHP

[will show the most common use cases

while ignoring edge cases.

thePHP

final class SellGoodCommandProcessorTest extends TestCase

{
public function testEmitsGoodSoldEvent(): void

{
$sourcer = $this->createStub(MarketSourcer::class);
$sourcer
->method('source')
->willReturn(Market::from(5, 3, 3, 3, 3, 3)):

/] ...

new SellGoodCommandProcessor($emitter, $sourcer):;

$processor

sprocessor=>process(new SellGoodCommand(Good::EBread, 1));

the#

Test Stub (dynamically created using API)

final class WritingEventSubscriberTest extends TestCase

{

public function testWritesSubscribedEvents(): void

{
/] ...

$writer = $this->createMock(EventWriter::class);
$writer
—>expects($this=>once())

->method('write')
->with($event);

new WritingEventSubscriber(swriter);

$subscriber

$subscriber->notify($event);

the%
Mock Object (dynamically created using API)

<?phpdeclare(;trict_types=1);
namespace PHPUnit\Framework;

abstract class TestCase extends Assert implements /* ... *x/
1

/] ...

VES:

* @template RealInstanceType of object

* @param class-string<RealInstanceType> $type

* @return Stub&ReallnstanceType

*/

final protected static function createStub(string $type): Stub

{

/] ..

createStub($type) returns an object of type $type&Stub }Q

$collaborator = $this->createStub(Collaborator::class);

$collaborator
->method ('doSomething')

->W1illReturn('value');

|

Every call to doSomething() will return 'value'

the%

$collaborator = $this->createStub(Collaborator::class); |

$collaborator
* —>method ('doSomething')
->w1llReturn('value', 'another-value'); -

=

 The first call to doSomething() will return 'value'
« The second call to doSomething() will return 'another-value'

- Subsequent calls to doSomething() will trigger an error!

thePHp

$collaborator = $this:>createStub(CollaboFatBr:{clgggyj__—_—_ﬁl

$collaborator
->method ('doSomething')
—>w1illThrowException(new RuntimeException)i

Every call to doSomething() will throw a RuntimeException

the%

> ./phpunit ——group test-doubles/test-stub ——testdox ——-no-progress
PHPUnit 12.5.0 by Sebastian Bergmann and contributors.

Runtime: PHP 8.5.0
Configuration: /Users/sb/Work/OpenSource/phpunit/phpunit.xml

Time: 00:00.014, Memory: 12.00 MB

createStub()

v Creates test stub for interface

Creates test stub for extendable class

Creates test stub for extendable readonly class

Cannot create test stub for final class

Cannot create test stub for enumeration

Cannot create test stub for unknown type

Return value generation 1is enabled by default

Return value generation can be disabled with attribute

NN N N N NS

createStubForIntersectionOfInterfaces()

Creates test stub for intersection of 1i1nterfaces

Cannot create test stub for intersection of interfaces when less than two interfaces are specified
Cannot create test stub for intersection of unknown i1nterfaces

Cannot create test stub for intersection of interfaces that declare the same method

Return value generation 1i1s enabled by default

Return value generation can be disabled with attribute

|\

N N N SN S

createConfiguredStub()
v Creates test stub for interface or extendable class with return value configuration for multiple methods

> ./phpunit ——group test-doubles/test-stub ——testdox ——-no-progress
PHPUnit 12.5.0 by Sebastian Bergmann and contributors.

Runtime: PHP 8.5.0
Configuration: /Users/sb/Work/OpenSource/phpunit/phpunit.xml

Time: 00:00.014, Memory: 12.00 MB

Test Stub

4
4
4

AR N Y T T U N U MR N

NN N N N NS

Method returns null when return value 1s nullable and no return value 1is configured

Method returns generated value when return value generation 1is enabled and no return value 1s configured
__toString() method returns empty string when return value generation is disabled and no return value is
configured

Method does not return value when return value generation 1s disabled and no return value 1is configured
Method returns configured value when return value 1s configured

Configured return value must be compatible with return type declaration

Objects passed as argument are not cloned by default

Cloning of objects passed as argument can be enabled

Met
Met
Met
Met
Met
Met

nod can be configured to return one of 1ts arguments

nod can be configured to return self reference

nod can be configured to return reference

nod can be configured to return values based on argument mapping

nod with default parameter values can be configured to return values based on argument mapping

nod with default parameter values can be configured to return values based on argument mapping that

omlits default values

Met
Met
Met
Met
Met

nod can be configured to return values using callback

nod can be configured to return different values on consecutive calls

nod can be configured to return different values and throw exceptions on consecutive calls
nod can be configured to throw an exception

nod with never return type declaration throws exception

Original __clone() method is not called by default when test double object is cloned
Original _ clone() method can optionally be called when test double object is cloned

> ./phpunit ——group test-doubles/test-stub ——testdox ——-no-progress
PHPUnit 12.5.0 by Sebastian Bergmann and contributors.

Runtime:
Configuration: /Users/sb/Work/OpenSource/phpunit/phpunit.xml

PHP 8.5.0

Time: 00:00.014, Memory: 12.00 MB

Return Value

v

NN NN SN SN SNSNSN S SSN S S SN SsS s

Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates

Generator (PHPUnit\Framework\MockObject\ReturnValueGenerator)
null for missing return type declaration
null for null

null for mixed

null for void

true for true

false for bool

false for false

0.0 for float

0 for 1int

empty string for string

empty array for array

stdClass object for object

callable for callable

callable for Closure

Generator for Generator

Generator for Traversable

Generator for iterable

> ./phpunit ——group test-doubles/test-stub ——testdox ——-no-progress
PHPUnit 12.5.0 by Sebastian Bergmann and contributors.

Runtime:
Configuration: /Users/sb/Work/OpenSource/phpunit/phpunit.xml

PHP 8.5.0

Time: 00:00.014, Memory: 12.00 MB

Return Value

Generator (PHPUnit\Framework\MockObject\ReturnValueGenerator)

v

AR Y N N U Y T T N U U W N

Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates
Generates

test stub for class or interface name

test stub for intersection of interfaces

new instance of test stub for static

new instance of test stub for static when used recursively

null for null|true|float|int|string|array|object

null for null|false|float|int|string|array|object

null for null|bool|float|int|string|array|object

true for true|float|int|string|array|object

false for false|float|int|string|array|object

false for bool|float|int|string|array|object

O for int|string|array|object

empty for string|array|object

array for array|object

stdClass object for union that contains object and unknown type
test stub for first intersection of interfaces found 1in union of intersections
test stub for unknown type

<?php declare(strict_types=1);
namespace PHPUnit\Framework;

abstract class TestCase extends Assert implements /* ... *x/
{
+ /] ..

/%%

*x @template RealInstanceType of object

* @param class-string<RealInstanceType> $type

* @return MockObject&ReallInstanceType

*/

final protected function createMock(string $type): MockObject

{
/] ...

createMock($type) returns an object of type $type&MockObject }

$C011ab°ratdF=-$tﬁzg'>createM0Ck(Collaborato?::ciaszjj__’___gl

$collaborator

—>expects($this=>once()) __'

->method('doSomething"')
->w1illReturn('value');

- $collaborator->doSomething() must be called exactly once

 Every call to $collaborator->doSomething() will return 'value'

thePHp

$C011ab°ratdF=-$tﬁzg'>createM0Ck(Collaborato?::ciasgjj__s___gl

$collaborator
->expects($this—->exactly (1)) __'

->method('doSomething"')
->w1illReturn('value');

- $collaborator->doSomething() must be called exactly once

 Every call to $collaborator->doSomething() will return 'value'

thePHp

$C011ab°ratdF=-$tﬁzg'>createM0Ck(Collaborato?::ciasgjj__s___gl

$collaborator
->expects($this—->exactly(0)) __'

->method('doSomething"')
->w1illReturn('value');

. $collaborator->doSomething () must not be called

 Every call to $collaborator->doSomething() will return 'value'

thePHp

$C011ab°ratdF=-$tﬁzg'>createM0Ck(Collaborato?::ciasgjj__s___gl

$collaborator

->expects($this->never()) __'

->method('doSomething"')
->w1illReturn('value');

. $collaborator->doSomething () must not be called

 Every call to $collaborator->doSomething() will return 'value'

thePHp

$C011ab°ratdF=-$tﬁzg'>createM0Ck(Collaborato?::ciasgjj__s___gl

$collaborator
->expects($this—>atLeastOnce()) _—'

->method('doSomething"')
->w1illReturn('value');

- $collaborator->doSomething() must be called at least once

 Every call to $collaborator->doSomething() will return 'value'

thePHp

$C011ab°ratdF=-$tﬁzg'>createM0Ck(Collaborato?::ciasgjj__s___gl

$collaborator
->expects($this—>atLeast (1)) _—'

->method('doSomething"')
->w1illReturn('value');

- $collaborator->doSomething() must be called at least once

 Every call to $collaborator->doSomething() will return 'value'

thePHp

$C011ab°ratdF=-$tﬁzg'>createM0Ck(Collaborato?::ciasgjj__s___gl

$collaborator
->expects($this—>atMost (1)) _—'

->method('doSomething"')
->w1illReturn('value');

- $collaborator->doSomething () must be called at most once

 Every call to $collaborator->doSomething() will return 'value'

thePHp

$collaboratoFk= $tﬂi§—>createMock(Collaborator;:chss); q

$collaborator
* —>expects($this=>once())

—>method('doSomething') _—'

->with('argument')
->w1illReturn('value');

- $collaborator->doSomething() must be called exactly once
« The first argument must be equal to 'argument’

- Every call to $collaborator->doSomething() will return 'value'

thePHp

$collaboratoFk= $tﬂi§—>createMock(Collaborator;:chss); n

$collaborator
* —>expects($this=>once())

—>method('doSomething') _—'

—>with($this->equalTo('argument'))
->w1illReturn('value');

- $collaborator->doSomething() must be called exactly once
« The first argument must be equal to 'argument’

- Every call to $collaborator->doSomething() will return 'value'

thePHp

$collaboratoFk= $tﬂi§—>createMock(Collaborator;:chss); q

$collaborator
* —>expects($this=>once())

—>method('doSomething') _—'

—>with($this->identicalTo('argument'))
->wW1lLlReturn('value');

- $collaborator->doSomething() must be called exactly once
« The first argument must be identical to 'argument’

- Every call to $collaborator->doSomething() will return 'value'

thePHp

> ./phpunit ——group test-doubles/mock-object —-testdox ——no—-progress
PHPUnit 12.5.0 by Sebastian Bergmann and contributors.

Runtime: PHP 8.5.0
Configuration: /Users/sb/Work/OpenSource/phpunit/phpunit.xml

Time: 00:00.014, Memory: 12.00 MB

createMock()

v Creates mock object for interface

Creates mock object for extendable class

Creates mock object for extendable readonly class
Cannot create mock object for final class

Cannot create mock object for enumeration

Cannot create mock object for unknown type

Return value generation 1is enabled by default

Return value generation can be disabled with attribute

NN N N N NS

createMockForIntersectionOfInterfaces()

Creates mock object for intersection of interfaces

Cannot create mock object for intersection of interfaces when less than two interfaces are specified
Cannot create mock object for intersection of unknown interfaces

Cannot create mock object for intersection of interfaces that declare the same method
Return value generation 1i1s enabled by default

Return value generation can be disabled with attribute

|\

N N N SN S

createConfiguredMock()
v Creates mock object for interface or extendable class with return value configuration for multiple methods

> ./phpunit ——group test-doubles/mock-object —-testdox ——no—-progress
PHPUnit 12.5.0 by Sebastian Bergmann and contributors.

Runtime: PHP 8.5.0
Configuration: /Users/sb/Work/OpenSource/phpunit/phpunit.xml

Time: 00:00.014, Memory: 12.00 MB

Mock Object

4
4
4

AR N Y T T U N U MR N

NN N N N NS

Method returns null when return value 1s nullable and no return value 1is configured

Method returns generated value when return value generation 1is enabled and no return value 1s configured
__toString() method returns empty string when return value generation is disabled and no return value is
configured

Method does not return value when return value generation 1s disabled and no return value 1is configured
Method returns configured value when return value 1s configured

Configured return value must be compatible with return type declaration

Objects passed as argument are not cloned by default

Cloning of objects passed as argument can be enabled

Met
Met
Met
Met
Met
Met

nod can be configured to return one of 1ts arguments

nod can be configured to return self reference

nod can be configured to return reference

nod can be configured to return values based on argument mapping

nod with default parameter values can be configured to return values based on argument mapping

nod with default parameter values can be configured to return values based on argument mapping that

omlits default values

Met
Met
Met
Met
Met

nod can be configured to return values using callback

nod can be configured to return different values on consecutive calls

nod can be configured to return different values and throw exceptions on consecutive calls
nod can be configured to throw an exception

nod with never return type declaration throws exception

Original __clone() method is not called by default when test double object is cloned
Original _ clone() method can optionally be called when test double object is cloned

> ./phpunit ——group test-doubles/mock-object —-testdox ——no—-progress
PHPUnit 12.5.0 by Sebastian Bergmann and contributors.

Runtime:

PHP 8.5.0
Configuration: /Users/sb/Work/OpenSource/phpunit/phpunit.xml

Time: 00:00.014, Memory: 12.00 MB

Mock Object

v

NN NSNS SNSNSNSNSNSSNSNSNSSNSNSSESNSNSSASNASAS

Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation
Expectation

-+~ ~

nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat
nat

nat

met
met
met
met
met
met
met
met
met
met
met
met
met
met
met
met
met
met
met
met
met
met
met

N0C
N0C
N0C
N0C
N0C
N0C
N0C
N0C
N10C
N0C
N10C
N0C
N10C
N0C
N10C
N0C
N0C
N0C
N0C
N0C
N0C
N0C

N0C

1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S
1S

never called succeeds when method is not called

never called fails when method is called

calleo
callec
calleo
callec
calleo
callec
calleo
callec
calleo
callec
calleo
callec
calleo
callec
calleo
callec
calleo
callec
calleo
callec

callec

Zero
Zero
once
once
once

at
at
at
at
at
at

least
least
least
least
least
least

twlce succeeds when method
twice fails when met
twice fails when met
twice fails when met
at most once succeeds when
at most once succeeds when

wilt
wilt
wilt

nod 1S
nod 1S

nod 1S

or more times succeeds when method 1s not called
or more times succeeds when method 1s called once
succeeds when method is called once

fails when method 1s never called
fails when method 1s called more than once

once succeeds when method 1s called once

once succeeds when method 1s called twice

twice succeeds when method 1s called twice

twice succeeds when method 1s called three times
once fails when method is not called

twice fails when method 1s called once

is called twice

never called
called once

called three times

method 1s never called

method 1s called once

at most once fails when method is called twice

N any parameter succeeds when method 1s called with parameter

n parameter succeeds when method 1s called with expected parameter

n parameter fails when method 1s called but with unexpected parameter

> ./phpunit ——group test-doubles/mock-object —-testdox ——no—-progress
PHPUnit 12.5.0 by Sebastian Bergmann and contributors.

Runtime: PHP 8.5.0
Configuration: /Users/sb/Work/OpenSource/phpunit/phpunit.xml

Time: 00:00.014, Memory: 12.00 MB

Mock Object
v Method call can be expected contingent on whether another method was previously called
Contingent expectations are not evaluated until their condition 1s met
Contingent expectations are evaluated when their condition 1s met
Expectation cannot be contingent on expectation that has not been configured
Expectations cannot have duplicate 1ids
Expectations can be configured on test stubs
Will return callback with variadic variables
Expectations are cloned when test double 1s cloned

NN N N N NS

Services
- Implement an interface that can be doubled

« We use a real implementation of the interface when we want to test

this implementation

« We use a test stub of the interface when we want to test a component

that depends on the interface

- We use a mock object of the interface when we want to test the
communication between collaborating objects

Value Objects

. Are immutable

- Cannot be doubled because they are final

« This is not a problem: doubling them would be pointless et

Services
- Implement an interface that can be doubled

« We use a real implementation of the interface when we want to test

this implementation

« We use a test stub of the interface when we want to test a component

that depends on the interface

- We use a mock object of the interface when we want to test the
communication between collaborating objects

Newable Objects
« Do not need to be doubled

- We double the repository etc. instead to 1solate from infrastructure

thePHP

This presentation has a home on the web:

Ready to take your testing to the next level?

Professional consulting: Flexible online sessions when you need them

Tailored workshops: We test your software together

Best practices: Code reviews and process improvements from an expert

https://phpunit.expert/consulting-and-coaching

Thank you!

https://phpunit.expert
sebastian@thephp.cc

@sebastian@phpc.social

thePHP

Image Credits

- https://www.pexels.com/de-de/foto/foto-von-auf-dem-fluss-geparkten-booten-2031706
- https://www.pexels.com/photo/walnuts-near-walnut-cracker-3358735
- https://www.pexels.com/de-de/foto/foto-von-leuten-die-stehen-wahrend-sie-diskutieren-3182772

thePHP

