
Modern PHP Development
Sebastian Bergmann

• I can help you with

• adopting PHPUnit,

• optimizing its use,

• refining development

• processes, and

• writing more testable code

Modern PHP Development
Sebastian Bergmann

Latin: modernus, from modo ("just now") + -rnus
Old French: moderne
Middle English: "pertaining to present times"
Contemporary: "recency", "up-to-dateness"

Modern Practices

Methods, techniques, or approaches that are
current, up to date, and reflect the present
state of knowledge or standards in a
particular field.

Best Practices

Methods, techniques, or approaches that are
current, up to date, and reflect the present
state of knowledge or standards in a
particular field.

Agenda

Documentation
Guidelines
Testing
AI

Agenda

Documentation
Guidelines
Testing
AI

Documentation

Documentation

• Software Architecture and Design
• Architecture Decision Records
• Technical Debt Records
• Quality Goals
• Coding Guidelines (beyond formatting)

Software Architecture (Example: arc42)

• Introduction & Goals
• Constraints
• Context & Scope
• Solution Strategy
• Building Block View
• Runtime View

• Deployment View
• Crosscutting Concepts
• Architecture Decisions
• Quality
• Technical Debt
• Glossary

Architecture Decision Records

• Status
• Context
• Decision
• Consequences

Technical Debt Records

• Context
• Impact
• Symptoms
• Risks

• Proposed solution
• Cost of delay
• Effort to resolve
• Dependencies

Agenda

Documentation
Guidelines
Testing
AI

Guidelines

Development Process

* We use test-driven development in this project
* Always run existing tests before making any code changes
* Execute the full test suite after implementing new features
* Always verify test results before completing tasks
* All tests must pass before changes are considered complete
* Code coverage should be maintained or improved

gu
id

el
in

es
.m

d

Guidelines

Development Process

* We use test-driven development in this project
* A human developer always writes the test code
* An AI coding agent may write production code
* An AI coding agent must not edit test code
* An AI coding agent must not edit configuration files for tools
* Always run existing tests before making any code changes
* Execute the full test suite after implementing new features
* If tests fail, fix them before presenting the final solution
* Always verify test results before completing tasks
* All tests must pass before changes are considered complete
* Code coverage should be maintained or improved

gu
id

el
in

es
.m

d

Development Tools

* Use `./tools/composer dump-autoload` to generate an autoloader
* Use `./tools/php-cs-fixer fix` to format the code
* Use `./tools/phpstan` to perform static analysis
* Use `./tools/phpunit` to run the tests
* Use `./tools/infection` to perform mutation testing

Programming Style

* Avoid inheritance
* A class must either be declared `abstract` or `final`
* Favour immutability (`readonly`) over mutability
* Favour lists over arrays
* In type annotations, use `list<type>` instead of `type[]`
* Use British English for names, comments, etc.

gu
id

el
in

es
.m

d

Agenda

Documentation
Guidelines
Testing
AI

Testing

• Static Testing
• Dynamic Testing

<?php declare(strict_types=1);
use PHPUnit\Framework\TestCase;

final class BankAccountTest extends TestCase
{
 public function testBalanceIsInitiallyZero(): void
 {
 $bankAccount = new BankAccount;

 $this->assertSame(0, $bankAccount->balanceInCents());
 }

 public function testMoneyCanBeDeposited(): void
 {
 $bankAccount = new BankAccount;

 $bankAccount->deposit(1234);

 $this->assertSame(1234, $bankAccount->balanceInCents());
 }

 public function testMoneyCanBeWithdrawn(): void
 {
 $bankAccount = new BankAccount;

 $bankAccount->withdraw(1234);

 $this->assertSame(-1234, $bankAccount->balanceInCents());
 }
}

<?php declare(strict_types=1);
use PHPUnit\Framework\TestCase;

final class BankAccountTest extends TestCase
{
 public function testBalanceIsInitiallyZero(): void
 {
 $bankAccount = new BankAccount;

 $this->assertSame(0, $bankAccount->balanceInCents());
 }

 public function testMoneyCanBeDeposited(): void
 {
 $bankAccount = new BankAccount;

 $bankAccount->deposit(1234);

 $this->assertSame(1234, $bankAccount->balanceInCents());
 }

 public function testMoneyCanBeWithdrawn(): void
 {
 $bankAccount = new BankAccount;

 $bankAccount->withdraw(1234);

 $this->assertSame(-1234, $bankAccount->balanceInCents());
 }
}

<?php declare(strict_types=1);
use PHPUnit\Framework\TestCase;

final class BankAccountTest extends TestCase
{
 public function testBalanceIsInitiallyZero(): void
 {
 $bankAccount = new BankAccount;

 $this->assertSame(0, $bankAccount->balanceInCents());
 }

 public function testMoneyCanBeDeposited(): void
 {
 $bankAccount = new BankAccount;

 $bankAccount->deposit(1234);

 $this->assertSame(1234, $bankAccount->balanceInCents());
 }

 public function testMoneyCanBeWithdrawn(): void
 {
 $bankAccount = new BankAccount;

 $bankAccount->withdraw(1234);

 $this->assertSame(-1234, $bankAccount->balanceInCents());
 }
}

<?php declare(strict_types=1);
use PHPUnit\Framework\TestCase;

final class BankAccountTest extends TestCase
{
 public function testBalanceIsInitiallyZero(): void
 {
 $bankAccount = new BankAccount;

 $this->assertSame(0, $bankAccount->balanceInCents());
 }

 public function testMoneyCanBeDeposited(): void
 {
 $bankAccount = new BankAccount;

 $bankAccount->deposit(1234);

 $this->assertSame(1234, $bankAccount->balanceInCents());
 }

 public function testMoneyCanBeWithdrawn(): void
 {
 $bankAccount = new BankAccount;

 $bankAccount->withdraw(1234);

 $this->assertSame(-1234, $bankAccount->balanceInCents());
 }
}

<?php
final class BankAccount {
 private $transactions;

 public function balanceInCents() {
 $balanceInCents = 0;

 foreach ($this->transactions as $transaction) {
 $balanceInCents += $transaction['amountInCents'];
 }

 return $balanceInCents;
 }

 public function deposit($amountInCents) {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => $amountInCents,
 'description' => 'Deposit',
];
 }

 public function withdraw($amountInCents) {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => -1 * $amountInCents,
 'description' => 'Withdrawal',
];
 }
}

<?php declare(strict_types=1);
final class BankAccount {
 private array $transactions = [];

 public function balanceInCents(): int {
 $balanceInCents = 0;

 foreach ($this->transactions as $transaction) {
 $balanceInCents += $transaction['amountInCents'];
 }

 return $balanceInCents;
 }

 public function deposit(int $amountInCents): void {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => $amountInCents,
 'description' => 'Deposit',
];
 }

 public function withdraw(int $amountInCents): void {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => -1 * $amountInCents,
 'description' => 'Withdrawal',
];
 }
}

<?php declare(strict_types=1);
final class BankAccount {
 private array $transactions = [];

 public function balanceInCents(): int {
 $balanceInCents = 0;

 foreach ($this->transactions as $transaction) {
 $balanceInCents += $transaction['amountInCents'];
 }

 return $balanceInCents;
 }
 /** @param positive-int $amountInCents */
 public function deposit(int $amountInCents): void {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => $amountInCents,
 'description' => 'Deposit',
];
 }
 /** @param positive-int $amountInCents */
 public function withdraw(int $amountInCents): void {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => -1 * $amountInCents,
 'description' => 'Withdrawal',
];
 }
}

<?php declare(strict_types=1);
final class BankAccount {
 private array $transactions = [];

 public function balanceInCents(): int {
 $balanceInCents = 0;

 foreach ($this->transactions as $transaction) {
 $balanceInCents += $transaction['amountInCents'];
 }

 return $balanceInCents;
 }
 /** @param positive-int $amountInCents */
 public function deposit(int $amountInCents): void {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => $amountInCents,
 'description' => 'Deposit',
];
 }
 /** @param positive-int $amountInCents */
 public function withdraw(int $amountInCents): void {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => -1 * $amountInCents,
 'description' => 'Withdrawal',
];
 }
}

<?php declare(strict_types=1);
final class BankAccount {
 private array $transactions = [];

 public function balanceInCents(): int {
 $balanceInCents = 0;

 foreach ($this->transactions as $transaction) {
 $balanceInCents += $transaction['amountInCents'];
 }

 return $balanceInCents;
 }
 /** @param positive-int $amountInCents */
 public function deposit(int $amountInCents): void {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => $amountInCents,
 'description' => 'Deposit',
];
 }
 /** @param positive-int $amountInCents */
 public function withdraw(int $amountInCents): void {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => -1 * $amountInCents,
 'description' => 'Withdrawal',
];
 }
}

<?php declare(strict_types=1);
final class BankAccount {
 private array $transactions = [];

 public function balanceInCents(): int {
 $balanceInCents = 0;

 foreach ($this->transactions as $transaction) {
 $balanceInCents += $transaction['amountInCents'];
 }

 return $balanceInCents;
 }
 /** @param positive-int $amountInCents */
 public function deposit(int $amountInCents): void {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => $amountInCents,
 'description' => 'Deposit',
];
 }
 /** @param positive-int $amountInCents */
 public function withdraw(int $amountInCents): void {
 $this->transactions[] = [
 'timestamp' => new DateTimeImmutable('now'),
 'amountInCents' => -1 * $amountInCents,
 'description' => 'Withdrawal',
];
 }
}

„[U]nit tests are not enough. Type systems are not
enough. Contracts are not enough, formal specs are not
enough, code review isn’t enough, nothing is enough.
We have to use everything we have to even hope of
writing correct code, because there’s only one way a
program is right and infinite ways a program can be
wrong, and we can’t assume that any tool we use will
prevent more than a narrow slice of all those wrong
ways.“ Hillel Wayne

https://www.hillelwayne.com/post/uncle-bob/

Type System
Static Tests

Dynamic Tests

Agenda

Documentation
Guidelines
Testing
AI

This presentation has a home on the web:

Thank you!

https://phpunit.expert

sebastian@thephp.cc

@sebastian@phpc.social

Image Credits

• https://www.pexels.com/de-de/foto/zeitrafferfotografie-wahrend-der-nacht-1103969
• https://commons.wikimedia.org/wiki/File:Swiss_cheese_model.svg

