
30 Years of Code, 25 Years of Tests
A Journey Through Code and Community

2025
How did we get here?

1995
Bill Clinton

1995
Helmut Kohl

1995
Motorola PowerPC 603e (100 MHz)

1995
Intel Pentium Overdrive (63 MHz)

1995
"Hackers"

1995
Rasmus Lerdorf publishes PHP Tools

From: rasmus@io.org (Rasmus Lerdorf)
Subject: Announce: Personal Home Page Tools (PHP Tools)
Date: 1995/06/08
Message-ID: <3r7pgp$aa1@ionews.io.org>#1/1
X-Deja-AN: 104053006
organization: none
newsgroups: comp.infosystems.www.authoring.cgi

Announcing the Personal Home Page Tools (PHP Tools) version 1.0.

These tools are a set of small tight cgi binaries written in C.

They perform a number of functions including:

. Logging accesses to your pages in your own private log files

. Real-time viewing of log information

. Providing a nice interface to this log information

. Displaying last access information right on your pages

. Full daily and total access counters

. Banning access to users based on their domain

. Password protecting pages based on users' domains

. Tracking accesses ** based on users' e-mail addresses **

. Tracking referring URL's - HTTP_REFERER support

. Performing server-side includes without needing server support for it

. Ability to not log accesses from certain domains (ie. your own)

. Easily create and display forms

. Ability to use form information in following documents

Here is what you don't need to use these tools:

. You do not need root access - install in your ~/public_html dir

. You do not need server-side includes enabled in your server

. You do not need access to Perl or Tcl or any other script interpreter

. You do not need access to the httpd log files

The only requirement for these tools to work is that you have
the ability to execute your own cgi programs. Ask your system
administrator if you are not sure what this means.

The tools also allow you to implement a guestbook or any other
form that needs to write information and display it to users
later in about 2 minutes.

The tools are in the public domain distributed under the GNU
Public License. Yes, that means they are free!

For a complete demonstration of these tools, point your browser
at: http://www.io.org/~rasmus

--
Rasmus Lerdorf
rasmus@io.org
http://www.io.org/~rasmus

https://talks.php.net/phpbcn19#/hist_1993

https://talks.php.net/phpbcn19#/hist_1993_2

https://talks.php.net/phpbcn19#/hist_1994

https://talks.php.net/phpbcn19#/7

1998
PHP 3

From: Kristian Koehntopp <kk () shonline ! de>
Date: Tue, 19 May 1998 12:56:15 +0000
To: php-general
Subject: [PHP3] A PHP standard library (was: Persistent Variables in PHP3)
X-MARC-Message: https://marc.info/?l=php-general&m=90222497032618

PHP should ship with, and install by default, a standard library.
This library should offer certain standard functionality that is
often required in larger web projects.

The language itself does not need to support any of the
functionality that should be in the library (see below). In fact,
quite a lot of PHP special functions are probable candidates for
library functions that could (and perhaps should) be removed from
the language core, if you are into language purity (I am not).
What PHP needs in my personal opinion is a more stable, better
debugged and better equipped modularization mechanism (and better
namespace management).

1998
PHPLIB

https://marc.info/?l=php-general&m=90222497032618&q=mbox

1998
PHPLIB

https://marc.info/?l=phplib&m=94064176914442&q=mbox

• I can help you with

• adopting PHPUnit,

• optimizing its use,

• refining development

• processes, and

• writing more testable code

2000
PHP 4

2000
PEAR

2000
First PHP conference (in Japan)

2000
Second PHP conference (in Cologne)

2000
I start working on PHPUnit

2002
Xdebug

https://derickrethans.nl/godfather.html

2004
PHP 5

2005
Symfony 1.0

2006
PHP_CodeSniffer

2007
Zend Framework 1.0

From: php@stefan-marr.de (Stefan Marr)
Subject: RFC: Traits for PHP
Date: 2008/02/18

Hi,

during last six months I've studied a language construct called Traits.
It is a construct to allow fine-grained code reuse and in my opinon
this would be a nice feature for PHP, which I did like to propose here.
The following RFC deals with the questions what Traits are, how they are
used, why they are usefull and how they do look like in PHP.
A patch implementing this new language construct is available, too.

Thank you for your attention and I'm looking forward to hear your comments
:)

Kind Regards
Stefan

2009
PHP 5.3 = PHP 6 - Unicode

2009
PhpStorm

2011
Composer

2011
Laravel 1.0

From: dmitry@zend.com (Dmitry Stogov)
Subject: phpng: Refactored PHP Engine with Big Performance Improvement
Date: 2014/05/05

For people who know me it's not a secret that PHP performance is my main
responsibility and passion at Zend. Actually, starting from PHP 5.0 we
already made 6 times speedup on synthetic benchmarks and about 2 times
speedup on real-life applications. We endlessly made improvements in PHP
engine and OPCache. However, by PHP 5.5 release we weren’t be able to make
any serious progress, and among other things started to experiment with
memory managers, JIT technologies and other potential ideas.

I spent a significant amount of time experimenting with JIT, and even
created a PoC of transparent LLVM based JIT compiler embedded into OPCache.
The results on bench.php was just amazing – (0.219 seconds against 2.175 – *10
times speedup of PHP 5.5*), but on real-life apps we got just few percent
speedup. This made us look much deeper into some of the runtime
characteristics and what was truly the bottleneck to making more
substantial progress.

It was clear the VM is already highly optimized, but works with data
structures that require endless memory allocation, deallocation and reference
counting. Typical real-life PHP application spends about 20% of the CPU time
in memory manager, 10% doing hash tables operations, 30% in internal functions
and only 30% in VM. Of course, we tried to JIT only VM code and in most cases
it had to perform the same memory allocations. So we decided to change focus
and work on the big bottlenecks. The idea was to change our data types to
minimize heap allocations. This was a very difficult decision because we had
to start with a huge refactoring, and we had no idea whether it’s going to
have any impact or not.

Now I'm glad to present you a result of our recent four month work. It's a
refactoring of the PHP engine that significantly improves performance,
memory usage and builds a foundation for a lot more future performance
improvements incl. JIT.

2012
PHP-CS-Fixer

2014
PHP 5.6

(75% faster than PHP 5.0)

2015
PHP 7

(150% - 400% faster than PHP 5.6)

2016
Composer 1.0

2016
Phan

2016
Psalm

2016
PHPStan

2017
Infection

2020
PHP 8

(Up to 20% faster than PHP 7.4)

2020
Composer 2.0

2021
The PHP Foundation

2024
Security Audit of PHP

2025
PIE

Hardware
Kernel

C/C++ Compiler

Webserver
Composer PHPStan PHPUnit

Framework Libraries
PHP Application

libc libxml2 OpenSSL PCRE ...

...

⋮

Framework Libraries
Web Browser ⋮

Hardware
Kernel

...

Composer PHPStan PHPUnit

Framework Libraries

...

This is (part of) your supply chain:

Are you already sponsoring it?

PHPUnit

This presentation has a home on the web:

Thank you!

https://phpunit.expert

sebastian@thephp.cc

@sebastian@phpc.social

Image Credits

• https://www.pexels.com/de-de/foto/menschen-silhouette-wahrend-des-sonnenuntergangs-853168
• https://www.pexels.com/de-de/foto/zeitrafferfotografie-wahrend-der-nacht-1103969
• "Day of the Tentacle", Copyright 1993 LucasArts
• https://phpics.com/picture.php?/18386
• https://www.slengpung.com/?id=3840
• https://www.flickr.com/photos/akrabat/8134304039
• Fortune, February 2004, 149(3):40-X
• https://www.youtube.com/watch?v=zekEqhaPmag

